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Abstract
In this paper, we present a method to construct the eigenspace of the tight-binding electrons
moving on a 2D square lattice with nearest-neighbor hopping in the presence of a perpendicular
uniform magnetic field which imposes (quasi-)periodic boundary conditions for the
wavefunctions in the magnetic unit cell. Exact unitary transformations are put forward to
correlate the discrete eigenvectors of the 2D electrons with those of the Harper equation. The
cyclic tridiagonal matrix associated with the Harper equation is then tridiagonalized by another
unitary transformation. The obtained truncated eigenbasis is utilized to expand the
Bogoliubov–de Gennes equations for the superconducting vortex lattice state, which shows the
merit of our method in studying large-sized systems. To test our method, we have applied our
results to study the vortex lattice state of an s-wave superconductor.

1. Introduction

Vortex states of type-II superconductors have received great
attention in recent years. The theoretical formalism describing
this effect is the Bogoliubov–de Gennes (BdG) approach [1],
which can be viewed as a real-space extension of Bardeen–
Cooper–Schrieffer (BCS) theory. This method allows one
to reveal effects of imperfections in superconductors, such
as impurities, surfaces, as well as the field-induced vortices
which we are concerned with in this paper. In recent years
there have been numerous studies on the superconducting
vortex lattice state by solving the discrete BdG equations via
either the numerical diagonalization of the BdG mean-field
Hamiltonian on a two-dimensional tight-binding lattice [2–6]
or the recursion method [7] generalized to the superconducting
state [8, 9]. However, the size of the unit cell of the vortex
lattice, which is inversely proportional to the amplitude of
the magnetic field, is limited by computer resources since
the dimension of the BdG equations grows with system size.
Therefore, early numerical works on small-size unit cells have
been limited to high magnetic fields over ten Tesla, which is
stronger than used in most experiments, and no remarkable
progress has been made over the past decade due to the time
consumption of full diagonalization (i.e. all eigenvalues and
eigenvectors) of the mean-field BdG Hamiltonian. In fact,

in BCS-type superconductors, electrons near the Fermi level
bind into Cooper pairs by exchanging virtual bosons such as
phonons, excitons or plasmons etc. Therefore, there exists an
energy cutoff, which equals approximately the characteristic
energy of the bosons, such as the Debye phonon frequency
of conventional superconductors, and correspondingly only the
electronic states lying near the Fermi surface within an energy
shell are necessary to explore. For the vortex problem, the
most appropriate starting point is to find the relevant electronic
states which participate in BCS pairing and forming of the
superconducting vortex lattice when an external magnetic field
is applied. The eigenequation describing this state is a 2D
difference equation formulated on a magnetic unit cell which is
twice the size of that of the superconducting vortex lattice. This
eigenvalue problem is also demanding when the system size is
large, even though only a truncated eigenspace is desired.

In this paper we present an exact reduction of the
Hermitian matrix associated with the 2D discrete equation
into a tridiagonal matrix, which composed of two consecutive
unitary transformations. First we reduce the 2D discrete
equation that describes electrons moving in a magnetic unit
cell into the famous Harper equation [10–13]. Algebraically,
this unitary transformation reduces the Hermitian matrix into a
cyclic tridiagonal matrix corresponding to the Harper equation.
Then by another exact transformation the cyclic tridiagonal
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matrix is further reduced into a tridiagonal form. The
exact reduction greatly lessens the computational burden in
numerical methods. Ultimately we diagonalize the tridiagonal
matrix utilizing available standard software packages to find
the appropriate eigenstates near the Fermi level, i.e. the
truncated eigenspace, and then expand and diagonalize the
BdG equations in this truncated eigenbasis.

This paper is organized as follows. In section 2, we
derive the BdG equations expanded in terms of the truncated
eigenbasis of the normal-state electrons in the magnetic field.
The Hermitian matrix associated with the 2D tight-binding
electrons on a 2D square lattice in a magnetic field is reduced
into a tridiagonal form in section 3. In section 4, the vortex
lattice state of an s-wave superconductor is studied as a test of
our method. Section 5 gives the concluding remarks.

2. The BdG equations for vortex lattice states

In this work, we adopt a BCS-type mean-field Hamiltonian
defined on a two-dimensional(2D) square lattice,

Ĥ = Ĥ0 + Ĥ� =
∑

i,j,σ

(tij − μδi,j)c
†
iσ cjσ

+
∑

i,j

(�ijc
†
i↑c†

j↓ + H.c.), (1)

where �ij = V
2 〈ci↑cj↓ − ci↓cj↑〉 for spin-singlet pairing1. In an

external uniform magnetic field applied in the z-direction, the
hopping integral acquires the Peierls phase factor as

tij = −t exp

(
i
2π

φ0

∫ i

j
A · dl

)
(2)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−t,

i = (mx , m y), j = (mx + 1, m y)

−t exp

(
i
2π Ba2

φ0
mx

)
,

i = (mx , m y), j = (mx , m y + 1).

(3)

Here t denotes the nearest-neighbor hopping integral. We
choose the Landau gauge with A = B(0, x, 0) and the
screening field induced by the supercurrent is neglected for
extreme type-II superconductors. φ0 = h/e is the electronic
flux quantum. Hereafter we use a pair of integers i ≡ (mx, m y)

as the index of the site in the square lattice to denote the x
and y coordinates. In the Nambu representation, the above
Hamiltonian can be written as

Ĥ =
∑

i,j

(c†
i↑, ci↓)

(
tij − μδij �ij

�∗
ij −t∗

ij + μδij

) (
cj↑
c†

j↓

)
(4)

= �̂†

(
ȟ − μ Ǐ �̌

�̌∗ −ȟ∗ + μ Ǐ

)
�̂, (5)

where �̂†(�̂) is the Nambu creation (annihilation) operator
defined as �̂† = (c†

1↑, c†
2↑, · · · , c†

K↑; c1↓, c2↓, · · · , cK↓) with

K the total number of lattice sites. ȟ and �̌ are K ×K matrices
with elements (ȟ)ij = tij and (�̌)ij = �ij, respectively. Ǐ is the

1 Our method can be readily extended to the case of spin-triplet pairing.

K × K identity matrix. The mean-field Hamiltonian can be
diagonalized by solving the following BdG equations,

∑

j

(
tij − μδij �ij

�∗
ij −t∗

ij + μδij

) (
un(j)
vn(j)

)
= En

(
un(i)
vn(i)

)

(6)
which can be viewed as Schrödinger-like equations for the
electron and hole amplitudes of a BdG quasiparticle. The
pairing potential �ij couples the u and v components and
satisfies the self-consistent condition

�ij = V
∑

|En |<ED

un(i)v∗
n(j) tanh

(
En

2kBT

)
, (7)

where ED is the Debye-type cutoff energy of the pairing
interaction. The BdG equation (6) can be expressed compactly
in a matrix form

(
ȟ − μ Ǐ �̌

�̌∗ −ȟ∗ + μ Ǐ

) (
u
v

)
= E

(
u
v

)
, (8)

with u and v K -dimensional vectors.
Abrikosov vortices, each of which carries one supercon-

ducting flux quantum �0 = h/2e, are created and form a lat-
tice structure in a type-II superconductor if one applies a mag-
netic field (Bc1 � B � Bc2). The vortex lattice causes periodic
modulation of the pairing potential and accordingly yields en-
ergy bands of BdG quasiparticles. To study this effect in our
study we adopt the concept of a magnetic unit cell (MUC) the
size of which is twice that of the unit cell of the vortex lat-
tice, and accordingly each MUC accommodates one electronic
flux quantum φ0 = 2�0. Here for illumination of our method,
we study the square vortex lattice which is aligned with the
underlying crystalline lattice. The unit cell size of the vortex
lattice is Nx × Nx , corresponding to a uniform magnetic field
B = �0/(Nx a)2. Each MUC accommodates two adjacent vor-
tices in the y direction. Therefore the MUC is of size Nx × Ny

with Ny = 2Nx . The whole system is composed of Mx × My

MUC’s. Thus the whole system has Mx My Nx Ny lattice sites.
For later convenience, we introduce a dimensionless parameter
α ≡ Ba2/φ0 = 1/(Nx Ny) denoting the ratio of magnetic flux
per plaquette to the electronic flux quantum φ0.

In the Abrikosov vortex lattice state, the BdG equations (6)
are symmetric under magnetic translation, with the translation
vector R = lx Nx ex + ly Nyey . Due to this magnetic
translational symmetry in the x and y direction, the
quasiparticle amplitudes can be expressed in the magnetic
Bloch form as

(
u(i)
v(i)

)
= eik·i

(
uk(i)
vk(i)

)
, (9)

where the magnetic Bloch wavevector k = 2π lx
Mx Nx

ex + 2π ly

My Ny
ey

with lx,y = 0, 1, · · · , Mx,y − 1. This transformation reduces
equation (8) to the new BdG equations for uk and vk

[
ȟk − μ Ǐ �̌k

(�̌−k)∗ −(ȟ−k)∗ + μ Ǐ

] (
uk

n
vk

n

)
= Ek

n

(
uk

n
vk

n

)
, (10)

where the matrix elements of the k-dependent matrices ȟk

and �̌k are (ȟk)ij = tije−ik·(i−j), (�̌k)ij = �ije−ik·(i−j). The
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quasiparticle amplitudes uk and vk satisfy the quasi-periodic
boundary conditions with period Nx along the x direction

uk(mx + Nx , m y) = e−i2πmy Nx αuk(mx, m y) (11)

vk(mx + Nx , m y) = ei2πmy Nx αvk(mx, m y) (12)

while they are periodic in the y direction with period Ny .
The (mx , m y) in equations (10)–(12) are restricted to sites
within one MUC with mx,y = 0, 1, . . . , Nx,y − 1. The above
procedure reduces the Hermitian matrix with linear dimension
2Mx My Nx Ny (equation (8)) into a direct sum of Mx My

block matrices, each of which is labeled by k and has linear
dimension 2Nx Ny (equation (10)). For each quasimomentum
k, equation (10) is diagonalized along with the boundary
conditions and then the whole solutions of all k are used by
the following equation:

�ij = V
∑

|Ek
n |<ED

uk
n(i)[vk

n (j)]∗eik·(i−j) tanh

(
Ek

n

2kBT

)
, (13)

to achieve self-consistence.
In the literature the typical size of the unit cell of the

vortex lattice studied by previous works was limited to around
20 × 20 [2–6]. Such a small unit cell size corresponds to
a magnetic field as large as B = �0/(20a)2 ≈ 32 T,
which is much higher than used by most experiments, if one
assumes a typical lattice constant a ≈ 4 Å. Therefore
one should find a way to diagonalize the BdG Hamiltonian
(Hermitian matrix) with a larger scale in order to match
numerical calculation with experimental data. Although one
can take advantage of the sparse nature of the BdG Hamiltonian

̌, we think that iterative methods, such as the Lanczos
algorithm, are not appropriate for this problem because they
are designed to compute a few eigenvalues (eigenvectors) with
the largest/smallest magnitudes.

To study the vortex lattice state with a larger unit cell
and correspondingly weaker and realistic magnetic field, we
re-express the real-space BdG equations (10) in the diagonal
representation of ȟk, which describes the 2D tight-binding
electrons in presence of a magnetic field,

ȟkϕk
q = εk

qϕ
k
q , (14)

where ϕk
q obeys the same boundary condition as equation (11).

According to the BCS theory, only a fraction of electrons in
the energy shell ED around the Fermi energy participate in the
Cooper pairing. Therefore we should first get the eigenstates
ϕk

q from equation (14) with energies |εk
q − μ| � ED relative to

the Fermi level, which will be addressed in section 3. Here the
quasiparticle amplitudes uk and vk are expanded in the basis
functions ϕk

q and (ϕ−k
q )∗, respectively,

uk
n =

∑

q

ak
n (q)ϕk

q

vk
n =

∑

q

bk
n(q)(ϕ−k

q )∗.
(15)

This reduces equation (10) to
∑

q

[
(εk

q − μ)δp,q �k
p,q

�−k∗
p,q (μ − εk

q)δp,q

] [
ak

n (q)

bk
n(q)

]
= Ek

n

[
ak

n (p)

bk
n(p)

]

(16)
where the matrix element �k

p,q is calculated according to

�k
p,q = (ϕk

p)
†�̌k(ϕ−k

q )∗ =
∑

i,j

[ϕk
p(i)]∗�ije

−ik·(i−j)[ϕ−k
q (j)]∗,

(17)
while from equations (13) and (15), we have

�ij = V
∑

k,p,q,n

ϕk
p(i)ϕ

−k
q (j)ak

n (p)[bk
n(q)]∗ tanh

(
Ek

n

2kBT

)
.

(18)
The equations (16)–(18) are solved iteratively until self-
consistence is satisfied. Eventually we can calculate
the local density of states, which is proportional to the
differential tunneling conductance, from the energy spectrum
and wavefunctions,

ρ(i, E) =
∑

k,n

|uk
n(i)|2δ(E − Ek

n ) + |vk
n (i)|2δ(E + Ek

n ). (19)

At the present stage, we have expressed the BdG equations
in the truncated eigenbasis of ȟk. The issue now is how to
compute this truncated eigenbasis, i.e. the eigenstates of ȟk

lying within an energy shell ED around the Fermi level.
Utilizing a standard computational algorithm [14], it

would be rather time consuming to compute some selected
eigenstates of a large matrix as ȟk, whose size N × N grows
rapidly with the length scale of the MUC, by tridiagonalizing
the matrix numerically. Even after taking advantage of the
sparse nature of ȟk, we find that iterative methods, such as the
Lanczos algorithm, are not quite appropriate for this problem
because they are most efficient at finding largest/smallest
eigenvalues(eigenvectors). In the following sections, we solve
this issue by showing that ȟk can be tridiagonalized exactly
by two unitary transformations. Then we appeal to standard
packages such as LAPACK [15] to compute the desired
eigenstates of the resulting tridiagonal matrix within an energy
range.

The dimension of the truncated eigenspace is approxi-
mately equal to Nγ , where γ ≡ ED/W is the ratio of the
energy cutoff ED to the width of the electronic band. There-
fore the dimension of the BdG equations (16) expressed in the
truncated eigenspace is 2Nγ , and thus the total labor of the
diagonalization is O((2Nγ )3). For weak-coupling BCS-type
superconductors, in which electron pairing is mediated by bo-
son glue, ED can be chosen as the characteristic Boson en-
ergy, which is much smaller than the width of the electronic
band. Consequently, computational efforts can be greatly
saved for small γ . As a comparison, the standard numerical al-
gorithm [14] of diagonalizing a Hermitian matrix (BdG Hamil-
tonian) involves first reducing the Hermitian matrix to the real
tridiagonal form by Householder reduction and then finding the
selected eigenvalues and eigenvectors of the tridiagonal matrix.
Although in the second procedure only a fraction of eigenstates
is desired and the workload is lessened, the total workload is
determined by the tridiagonalization procedure, for which the
workload is always O((2N)3) as long as the Householder re-
duction is utilized.
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Figure 1. Spatial distribution of the magnitude of the s-wave pairing
potential |�| in one magnetic unit cell of size 80 × 160. The x- and
y-axis are in units of the lattice constant a. |�| is in units of the
hopping integral t .

(This figure is in colour only in the electronic version)

3. 2D tight-binding electrons in a magnetic unit cell

In this section, we show in detail the method of exactly
reducing the matrix ȟk to a tridiagonal matrix. The
eigenequation of ϕk

n (equation (14)), i.e. the discrete
Schrödinger equation describing a 2D free electron moving in
a perpendicular uniform magnetic field in a square lattice, can
be written in an explicit form

eikx ϕk
n (mx + 1, m y) + e−ikx ϕk

n (mx − 1, m y)

+ ei(2πmx α+ky )ϕk
n (mx , m y + 1)

+ e−i(2πmx α+ky )ϕk
n (mx, m y − 1) = ε̃k

nϕ
k
n (mx , m y), (20)

where ε̃k
n = εk

n/(−t) and ϕk obeys the quasi-periodic boundary
condition along the x direction and a periodic boundary
condition along the y direction

ϕk(mx + Nx , m y) = e−i2πmy Nx αϕk(mx , m y),

ϕk(mx , m y + Ny) = ϕk(mx , m y).
(21)

First we find that the eigenfunction ϕk is related to the
eigenfunction gk of the Harper equation by a unitary
transformation. Explicitly,

ϕk
n (mx, m y) = 1√

Ny

Ny−1∑

l=0

ei2πmylNx αgk
n(mx + l Nx ). (22)

Substituting the above equation into equation (20), one readily
find that gk

n satisfies the Harper equation

eikx gk
n (m + 1) + e−ikx gk

n(m − 1) + 2 cos(2πmα + ky)gk
n(m)

= ε̃k
n gk

n (m), (23)

Here m = 0, 1, . . . , N − 1 with N = Nx Ny . g satisfies
the periodic boundary condition gk

n (m + N ) = gk
n (m). In the

matrix form, the Harper equation can be expressed as

P̌kgk
n = ε̃k

n gk
n , (24)

where

P̌k =

⎛
⎜⎜⎜⎜⎜⎝

a0 eikx e−ikx

e−ikx a1 eikx

e−ikx · ·
· · ·

· · eikx

eikx e−ikx aN−1

⎞
⎟⎟⎟⎟⎟⎠

, (25)

with am = 2 cos(2πmα + ky). In addition, the eigenvector
gk

n = (gk
n (0), . . . , gk

n (N − 1))T. As a special case of the
almost Mathieu equation, where the anisotropy parameter
equals unity, the Harper equation (23) is also known as
the Azbel–Hofstadter problem [11, 12] and can be viewed
as a discrete Schrödinger equation describing tight-binding
electrons moving on a one-dimensional lattice subject to a
commensurate (in this paper, α = 1/Nx Ny is rational)
potential.

The periodic tridiagonal matrix P̌k can be further reduced
to a tridiagonal matrix by another unitary transformation. For
simplicity, we only show the procedure for the ky = 0 case and
the following discussion can be readily generalized for ky 	= 0.
The transformation of wavevectors from g to f is as follows:

f (0) = g(0),

f (1) = eikx g(1) + e−ikx g(N − 1)√
2

,

f (2) = e2ikx g(2) + e−2ikx g(N − 2)√
2

,

· · ·

f

(
N

2
− 1

)
= ei( N

2 −1)kx g( N
2 − 1) + e−i( N

2 −1)kx g( N
2 + 1)√

2
,

f

(
N

2

)
= g

(
N

2

)
,

f

(
N

2
+ 1

)
= ei(N/2−1)kx g( N

2 − 1) − e−i( N
2 −1)kx g( N

2 + 1)√
2

,

· · ·

f (N − 2) = e2ikx g(2) − e−2ikx g(N − 2)√
2

,

f (N − 1) = eikx g(1) − e−ikx g(N − 1)√
2

.

(26)
Substituting the above relations into equation (23), we have the
eigenequation for f , which reads,

Ť k f k
n = ε̃k

n f k
n (27)

where Ť is an N × N tridiagonal matrix,

Ť k =
(

Ť k
u 0
0 Ť k

d

)
(28)

4
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where the two matrices Ť k
u and Ť k

d are written as

Ť k
u =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

√
2√

2 a1 1
1 · ·

· · ·
· · 1

1 a N
2 −1

√
2(−1)lx

√
2(−1)lx a N

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)
and

Ť k
d =

⎛
⎜⎜⎜⎜⎜⎝

a N
2 −1 1
1 a N

2 −2 1
1 · ·

· · ·
· · 1

1 a1

⎞
⎟⎟⎟⎟⎟⎠

. (30)

The eigenvector f k
n = ( f k

n (0), · · · , f k
n (N − 1)).

After the two consecutive unitary transformations, we
have successfully reduced the Hermitian matrix ȟk into a
tridiagonal matrix Ť k. Here we emphasize that the reduction
is exact without any numerical assumption and takes no
CPU time compared with the numerical reduction. Then the
eigenproblem of the tridiagonal matrix Ť k can be solved using
standard packages such as LAPACK.

4. An example: vortex lattice states of a type-II
s-wave superconductor

In this section, we illustrate how our method is applied in
solving the BdG equation for the vortex lattice states of an
s-wave superconductor. The microscopic parameters used in
this paper are as follows. As a model calculation we set the
relevant parameters as follows. μ = −3t , which gives rise
to an almost circular Fermi surface with the Fermi wavevector
kF ≈ 1.03a−1 and Fermi velocity vF ≈ 1.81ta/h̄. The on-site
attractive interaction V = 2t . The Debye-type energy cutoff
ED = 0.5t . This set of parameters results in an s-wave pairing
potential �0 ≈ 0.065t in the zero-temperature limit with the
estimated coherence length ξ0 = h̄vF/π�0 ≈ 9a.

The model calculation is carried out for a system
composed of Mx × My = 40 × 20 MUCs with each MUC
of size Nx × Ny = 80 × 160, which corresponds to a magnetic
field B = φ0/(Nx Nya)2 ≈ 2.0 T if the lattice constant is set as
4 Å. Therefore, for each k of the total 800 quasimomenta,
we employ the standard LAPACK routine to diagonalize
the 12 800 × 12 800 tridiagonal matrix (equation (28)) and
find that there are approximately 1173 eigenstates { f k

n } with
eigenenergies lying within the energy range |εk − μ| � ED.
We can obtain the eigenstates of the Harper equation {gk

n} by
the inverse transformation of equation (26). Then substituting
gk

n into equation (22) we successfully obtain the truncated
eigenbasis {ϕk

n }, in which the BdG equations (16) are expressed
as the 2×1173-dimensional eigenvalue problem and the matrix
elements �k

p,q are calculated from equation (17). After the
BdG equations are diagonalized for each k, we substitute the
quasiparticle amplitudes ak

n and bk
n into the self-consistent

condition equation (18) to compute the renewed values of the

Figure 2. The quasiparticle spectrum in the magnetic Brillouin zone.
See the text for details.

pairing potential. Equations (16)–(18) are solved iteratively
until convergence is reached.

In figure 1 we show the spatial variation of the self-
consistent pair potential within one 80 × 160-sized magnetic
unit cell, in which two superconducting vortices are situated.
The s-wave pairing potential vanishes at the center of each of
the two 80 × 80 squares and increases with the distance from
the core center, recovering its bulk value approximately with a
length scale ξ0. The variation of the pairing potential around
the vortex core exhibits almost circular symmetry, as shown in
the figure. The reasons are twofold. Firstly, the Fermi level
is far away from the van Hove singularity and accordingly the
Fermi surface is approximately circular. Secondly, the impact
from neighboring vortices which are arranged squarely is weak
because the distance between the adjacent vortices is about
one order of magnitude larger compared to the characteristic
coherence length.

Figure 2 displays the quasiparticle spectra along three
high-symmetry lines in the magnetic Brillouin zone, where
�X , X M and M� connect two of the three points: � = (0, 0),
X = ( π

Nx a , 0) and M = ( π
Nx a , π

Ny a ). As shown in the figure,
the vortex bound states, which are localized in a isolated vortex
line, as revealed in [16, 17], are broadened into energy bands
in the superconducting vortex lattice owing to the interference
effect. However, due to the localized nature of the vortex states,
the overlapping of the quasiparticle wavefunctions belonging
to different vortices is weak, especially for the low-lying states.
Consequently, the bands with lower energies are flatter, and the
level spacing between pairs of the first few lowest-lying bands
is of the order of �2

0/EF. These results are consistent with
previous works [4, 5, 18].

In figure 3 we plot the local density of states (LDOS) as a
function of energy at the vortex core center and the inter-vortex
site. At the center of the vortex core, the LDOS is greatly
enhanced at the energy approximately equal to �2

0/EF due
to the strongly localized vortex bound states, while depressed
around E = ±�0 as compared with the LDOS at the inter-
vortex site. The model calculation shows the feasibility of our
methods in studying the vortex lattice with a large unit cell.

5
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Figure 3. LDOS as a function of energy at the vortex core center
(solid line) and the inter-vortex site (dash–dotted line).

5. Conclusion

The discrete BdG equations developed in the 2D tight-
binding lattice have been used to study the magnetic-field-
induced superconducting vortex lattice state in the literature.
The size of the system studied in previous works was
limited due to directly performing the full diagonalization
of the BdG Hamiltonian. In this paper, we have extended
this method by constructing a truncated eigenspace for the
normal-state electrons moving on a 2D square lattice in the
presence of a uniform magnetic field. The motion of the
electrons is governed by the vector potential, which imposes a
(quasi-)periodic boundary condition along the x and y
directions of the magnetic unit cell. We have presented two
consecutive unitary transformations to reduce the Hermitian
matrix for the 2D electrons exactly into a tridiagonal matrix.
By doing so, we have successfully related the desired
eigenbasis with that of the celebrated Harper equation, which
is the eigenequation for a periodic tridiagonal matrix. Then a
second transformation is applied to further reduce the periodic
tridiagonal matrix to a tridiagonal one. This greatly reduces
the cost of CPU time and helps us to treat systems with a
much larger size. To test our method and elucidate it more
specifically, we have applied our results to study the vortex
lattice states of an s-wave superconductor. The extension of
our method to a more sophisticated band structure, as well as
to 2D triangular or honeycomb lattices, will be performed in
future works.

It will also be quite interesting to investigate the effect
of superconductivity on the nested band structure of the
normal-state electronic spectrum, i.e. the so-called Hofstadter

butterfly [12]. In fact, the pairing potential term in
equation (1) combines two initially decoupled Hofstadter
Hamiltonians, and the modulation of the pairing potential
caused by the superconducting vortex lattice will certainly
deform the original Hofstadter spectrum. With the help of
our numerical method, such an effect can be studied for a
wide range of magnetic fields with the vortex lattice calculated
self-consistently. However, we emphasize that the method
developed in this work is suitable for vortex lattices whose
periodicity is commensurate with that of the underlying lattice,
and accordingly the magnetic flux per plaquette is rational
(more precisely α = 1/Nx Ny ). A significant challenge exists
to investigate the incommensurability effect by the extension
of our method.
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